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Red-green-blue model

David B. Wilson
Microsoft Research, One Microsoft Way, Redmond, Washington 98052, USA

~Received 3 December 2002; published 31 March 2004!

We experimentally study the red-green-blue model, which is a system of loops obtained by superimposing
three dimer coverings on offset hexagonal lattices. We find that when the boundary conditions are ‘‘flat,’’ the
red-green-blue loops are closely related to stochastic Loewner evolution with parameterk54 (SLE4) and
double-dimer loops, which are the loops formed by superimposing two dimer coverings of the Cartesian lattice.
But we also find that the red-green-blue loops are more tightly nested than the double-dimer loops. We also
investigate the two-dimensional minimum spanning tree, and find that it is not conformally invariant.

DOI: 10.1103/PhysRevE.69.037105 PACS number~s!: 05.50.1q, 64.60.Fr, 64.60.Ak
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I. INTRODUCTION

We investigate the red-green-blue~RGB! model, which
was introduced by Benjamini and Schramm@1#. A RGB con-
figuration is a system of the loops on a region of the tria
gular lattice, which is obtained by superimposing three p
fect matchings~or dimer coverings! on offset hexagona
lattices as shown in Fig. 1. The sites of the triangular latt
may be three-colored so that no two adjacent sites have
same color. If we delete the sites of a given color~say blue!,
then the sites of the other two colors~red and green! form a
hexagonal lattice on which we can construct a random p
fect matching~the blue perfect matching!. When we super-
impose the red, green, and blue perfect matchings, each
tex is matched with one neighboring vertex of each of
other two colors. Since each vertex has degree two, a R
configuration consists of closed loops, and each loop ha
orientation if we follow the edges in the order red to green
blue.

It is worth remarking that the boundary conditions
dimer systems can have a profound impact on the beha
of dimers even far within the interior of a region@2–4#.
There are height functions associated with dimer configu
tions on the Cartesian lattice@5,6# and hexagonal lattice@7#
~see also@8,9#!. If there is an imbalance between the differe
colors of vertices along the boundary, then the height al
the boundary will be ‘‘tilted,’’ and this affects the dimer
throughout the region. Consequently, the behavior of
RGB model on regions with tilted boundary conditions cou
be different from the behavior of the RGB model on t
regions that we consider here, where the three color cla
along the boundary are balanced~‘‘flat’’ boundary condi-
tions!.

In an earlier work, Kenyon and the author@10# found
experimentally that the fractal dimension of these loops
3/2. Here we report on additional experiments, where we
that the winding angle variance at a typical point on a loop
13 logD whereD is the diameter of the loop, and that th
system of loops appears to be conformally invariant. Th
properties suggest that the RGB loops are closely relate
stochastic Loewner evolution@11# with parameterk54
(SLE4), and that the RGB loops belong to the same univ
sality class as the contours of two-dimensional~2D! Fortuin-
Kasteleyn~FK! @12# clusters at criticality whenq54, and
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the loops formed in the double-dimer~or ‘‘double-domino’’!
model @13#, which in turn are thought to correspond to th
‘‘contours’’ of a Gaussian-free field@13#. However, the sys-
tem of RGB loops does not have the same limiting behav
as the system of double-dimer loops, because we also
that the RGB loops are more tightly nested than the dou
dimer loops.

II. GENERATING RGB CONFIGURATIONS

To generate a RGB configuration of a region, we need
generate dimer coverings of three regions of the hexago
lattice. There are many ways to generate dimer covering
the hexagonal lattice, but the fastest of these is based
generalization of Temperley’s bijection@14# between span-
ning trees and dimers. To generate the perfect matching
the hexagonal lattice, the corresponding spanning trees
on a directed triangular lattice~see @15# for details!, and
these spanning trees may be quickly generated using a
gorithm based on loop-erased random walk@16#. This
generalized-Temperley bijection only works for regions
the hexagonal lattice that have certain special~very flat!
boundary conditions, so we can only expect to use it to g
erate RGB configurations of certain regions. One reg
where we can use spanning trees to rapidly generate R
configurations is the equilateral triangle with side lengthL
~Figs. 1 and 2!.

III. WINDINESS OF RGB LOOPS

We recall the definition of the windiness of a loop used
@17#. Consider an ant which travels along the loop; after
ant has just traversed a given edge in the loop, before
versing the next edge it will either turn left 120°, turn rig
120°, or not turn at all. If we keep track of the total turnin
~measured in radians! when the ant travels from pointA to
point B on the loop, then this is~approximately! the winding
angle between pointsA and B. When the ant travels all the
way around the loop, it has turned6360°, so to make the
winding angle between pointsA and B independent of the
number of times that the ant travels around the loop and
direction of travel, we adjust the total turning~measured in
radians! by 2p3 @number of steps betweenA andB]/@length
of loop#. To define the winding angle at a given pointX
©2004 The American Physical Society05-1
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FIG. 1. ~Color online! The
red-green-blue~RGB! model on a
triangular region of side length 12
(L54). The three color classes o
vertices are balanced along th
boundary, so the boundary cond
tions are ‘‘flat.’’
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relative to the global average direction, we pick an arbitr
point A, compute the winding angle fromA to X, and subtract
a global constant so that the average winding angle at po
on the curve is 0.
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When we measure the variance in the winding angle
random points along the longest loop in the RGB configu
tion in a region of orderL, we find that the variance grow
like 13 logL—so in the notation of@17#, k251. This wind-
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FIG. 2. ~Color online! The
RGB model on the triangular do
main (L520) is conformally
mapped to a disk. The invers
conformal map, from the disk to
the triangle, is the hypergeometri
function shown in the diagram. If
the RGB model is conformally in-
variant, then the loops in the dis
will be rotationally invariant.
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ing angle variance coefficient of 1 also shows up in the c
tours of FK clusters at criticality whenq54, and other re-
lated models such as the double-dimer model and SLE4 ~see
@17–19#!.

IV. CONFORMAL INVARIANCE OF RGB LOOPS

Since there is only one region, the equilateral triangle,
which we can rapidly generate RGB configurations, th
makes the testing of conformal invariance somewhat in
esting. The test that we use is similar in spirit to the te
used by Schramm to test the conformal invariance of
uniform spanning tree. We conformally mapped the RG
model on the triangular domain to a circular domain,
shown in Fig. 2. If the RGB model with flat boundary co
ditions were conformally invariant, then it must be that af
we map a region to the disk, the resulting system of loo
would be rotationally invariant. But if conformal invarianc
failed to hold, then there would be no particular reason
believe that the loops mapped to the disk would be rotati
ally invariant. After all, referring to Fig. 2, the points in th
disk to which the corners of the triangle are mapped certa
look different than other points in the disk, soa priori we
would expect the image in the disk to be anisotropic if t
RGB model were not conformally invariant. As we shall se
the minimum spanning tree model fails this test, so this
is a nontrivial test of conformal invariance.

To test the rotational invariance of the image of the RG
model in the disk, we singled out the outermost loop s
rounding the center of the circular domain, and collec
statistics on its furthest extents in the6x and6y directions.
If the loops in the RGB model are conformally invarian
then these four random variables would be equidistribu
But otherwise, there would be no particular reason to beli
that any of these random variables~other than the first two!
would have the same distributions. As shown in Fig. 3,
cumulative distribution functions for these four random va
ables appear to coincide, so we conclude that the RGB m
appears to be conformally invariant.

V. CONFORMAL NONINVARIANCE OF MINIMUM
SPANNING TREES

To evaluate the efficacy of our conformal invariance te
we applied it to two additional models: the minimum spa

FIG. 3. In the RGB model (L51024), the outermost loop sur
rounding the center point is selected, and conformally mappe
the disk. The image of this loop appears to be rotationally invaria
in particular, the empirical cumulative distribution functions~cdf’s!
for the furthest extents of the loop in thex direction,y direction,
2x direction, and2y direction appear to coincide.
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ning tree and uniform spanning tree models. The minim
spanning tree~MST! is formed by assigning uniformly ran
dom edge weights to the edges of the Cartesian lattice,
picking the spanning tree~connected acyclic subset of edge!
which minimizes the total weight. The uniform spanning tr
~UST! is simply a spanning tree chosen uniformly at rando
from all spanning trees.

Figure 4 shows the MST of a square grid after it is co
formally mapped to the unit disk, with three of the corne
mapped to the three cube roots of unity. To test the rotatio
invariance of the MST after it is mapped to the disk, w
looked at the paths connecting the three points at the c
roots of unity ~highlighted in Fig. 4!, and focused on the
‘‘triple-point’’ T contained in all three paths. If the image
MST in the disk were isotropic, thenT, e2p i /3T, ande4p i /3T
would be equidistributed. However, as Fig. 5 illustrate
these variables are not equidistributed, so we conclude
the MST is not conformally invariant. The conformal noni
variance of the MST is surprising, given the close relatio
ship between the MST and invasion percolation@20#, the
close relationship between invasion percolation and perc
tion, and the conformal invariance of percolation@21–23#.

In contrast to the MST, the UST passes this test, as sh
in Fig. 6. The triple pointT connecting three boundary poin
of the UST is already known to be conformally invaria

to
t;

FIG. 4. ~Color online! The minimum spanning tree~MST! on
the 32332 square grid, mapped conformally to the disk so th
three of the corners of the square are mapped to the cube roo
unity. The paths connecting these corners are highlighted; the t
point T is the point contained in all three paths.

FIG. 5. The distribution of the triple pointT for the MST~on the
102431024 grid! is not symmetric under 120° rotations, as it wou
be if the MST were conformally invariant.@v5exp~2pi/3!.#
5-3
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@24#, and indeed the entire UST process is now known to
conformally invariant@25#.

Thus we learn not only that the minimum spanning tree
not conformally invariant, but that this test is a nontrivial te
of conformal invariance.

VI. NESTING OF RGB LOOPS

For a scale-invariant loop model on a region of si
lengthL, we would expect the number of loops surroundi
a point to scale as const3 logL. The value of this constant i
a measure of how deeply nested the loops are. For
double-dimer model, Kenyon@26# proved that this nesting
constant is 1/p2. ~Cardy and Ziff calculate this nesting con
stant for FK contours@27#, which is 1/p2 when q54.! We
measured the nesting constant of the RGB loops, and fo
that it is 20%–25% larger than the double-dimer nesting c
stant; Sheffield@28# has recently predicted this constant to
A3/2/p2. Figure 7 shows that the outermost red-green-b
loops are in a sense larger than the outermost double-d
loops, which is consistent with the red-green-blue loops
ing more tightly nested within one another.

FIG. 6. In contrast, the distribution of the triple pointT for the
UST ~on the 102431024 grid! passes this conformal invarianc
test. Kenyon@24# has proven that the triple point for UST is in fa
conformally invariant~see also@25#!.
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VII. CONCLUSIONS

Our experiments indicate that the loops of the RGB mo
~with flat boundary conditions! are conformally invariant and
have windiness constant 1. Earlier experiments@10# have
indicated that the fractal dimension is 3/2. These proper
suggest that RGB loops belong to the same universality c
as double-dimer loops, the fully-packed-loop model withn
52, and the contours of critical FK clusters withq54, and
are closely related to SLE4. But the systemof RGB loops
~not just individual loops! differs from the system of double
dimer loops, as the loops are nested within one another m
tightly.
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FIG. 7. Comparison of the outermost loop surrounding the o
gin within the red-green-blue and double-dimer models. The cdf
the size of the RGB loop is smaller than the corresponding cdf
the double-dimer loop, so in this sense the outermost RGB loo
larger than the outermost double-dimer loop. There is a g
chance that the outermost RGB loop approaches the boundary
closely, as in Fig. 2.
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