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Red-green-blue model
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We experimentally study the red-green-blue model, which is a system of loops obtained by superimposing
three dimer coverings on offset hexagonal lattices. We find that when the boundary conditions are “flat,” the
red-green-blue loops are closely related to stochastic Loewner evolution with parametefSLE,) and
double-dimer loops, which are the loops formed by superimposing two dimer coverings of the Cartesian lattice.
But we also find that the red-green-blue loops are more tightly nested than the double-dimer loops. We also
investigate the two-dimensional minimum spanning tree, and find that it is not conformally invariant.
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I. INTRODUCTION the loops formed in the double-dimér “double-domino”)
model[13], which in turn are thought to correspond to the
We investigate the red-green-bliBGB) model, which  “contours” of a Gaussian-free fielfiL3]. However, the sys-

was introduced by Benjamini and Schrarfibf. ARGB con-  tem of RGB loops does not have the same limiting behavior
figuration is a system of the loops on a region of the trian-as the system of double-dimer loops, because we also find
gular lattice, which is obtained by superimposing three perthat the RGB loops are more tightly nested than the double-
fect matchings(or dimer coverings on offset hexagonal dimer loops.

lattices as shown in Fig. 1. The sites of the triangular lattice

may be three-colored so that no two adjacent sites have the Il. GENERATING RGB CONFIGURATIONS
same color. If we delete the sites of a given cdkay blug, _ _ .
then the sites of the other two colaied and greenform a To generate a RGB configuration of a region, we need to

hexagonal lattice on which we can construct a random pergenerate dimer coverings of three regions of the hexagonal
fect matching(the blue perfect matchingWhen we super- lattice. There are many ways to generate dimer coverings of
impose the red, green, and blue perfect matchings, each vehe hexagonal lattice, but the fastest of these is based on a
tex is matched with one neighboring vertex of each of thegeneralization of Temperley's bijectidri4] between span-
other two colors. Since each vertex has degree two, a RGBIing trees and dimers. To generate the perfect matchings on
configuration consists of closed loops, and each loop has ahe hexagonal lattice, the corresponding spanning trees are
orientation if we follow the edges in the order red to green toon a directed triangular latticésee[15] for detail9, and
blue. these spanning trees may be quickly generated using an al-
It is worth remarking that the boundary conditions of gorithm based on loop-erased random walk6]. This
dimer systems can have a profound impact on the behavigeneralized-Temperley bijection only works for regions of
of dimers even far within the interior of a regid@—4].  the hexagonal lattice that have certain speciary flap
There are height functions associated with dimer configuraboundary conditions, so we can only expect to use it to gen-
tions on the Cartesian lattidé,6] and hexagonal latticE7] ~ erate RGB configurations of certain regions. One region
(see alsd8,9)). If there is an imbalance between the differentwhere we can use spanning trees to rapidly generate RGB
colors of vertices along the boundary, then the height alongonfigurations is the equilateral triangle with side length 3
the boundary will be “tilted,” and this affects the dimers (Figs. 1 and 2
throughout the region. Consequently, the behavior of the
RGB model on regions with tilted boundary conditions could
be different from the behavior of the RGB model on the
regions that we consider here, where the three color classes We recall the definition of the windiness of a loop used in
along the boundary are balancé¢tflat” boundary condi- [17]. Consider an ant which travels along the loop; after the
tions). ant has just traversed a given edge in the loop, before tra-
In an earlier work, Kenyon and the authftO] found versing the next edge it will either turn left 120°, turn right
experimentally that the fractal dimension of these loops is120°, or not turn at all. If we keep track of the total turning
3/2. Here we report on additional experiments, where we findmeasured in radiansvhen the ant travels from poirf to
that the winding angle variance at a typical point on a loop isoint B on the loop, then this i&pproximately the winding
1XlogD whereD is the diameter of the loop, and that the angle between pointd and B. When the ant travels all the
system of loops appears to be conformally invariant. Thesaay around the loop, it has turnetd360°, so to make the
properties suggest that the RGB loops are closely related twinding angle between pointd and B independent of the
stochastic Loewner evolutiofll] with parameterk=4  number of times that the ant travels around the loop and the
(SLE,), and that the RGB loops belong to the same univerdirection of travel, we adjust the total turniigheasured in
sality class as the contours of two-dimensiof2dd) Fortuin-  radiang by 27X [number of steps betweeghandB]/[length
Kasteleyn(FK) [12] clusters at criticality whem=4, and  of loop]. To define the winding angle at a given poiXt

IIl. WINDINESS OF RGB LOOPS
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color vertices of triangular lattice red, green, and blue
so that nearest neighbors have different colors

FIG. 1. (Color online The
red-green-bluéRGB) model on a
triangular region of side length 12
(L=4). The three color classes of
vertices are balanced along the
boundary, so the boundary condi-
tions are “flat.”

red random matching green random matching blue random matching
on lattice avoiding red vertices on lattice avoiding green vertices on lattice avoiding blue vertices
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relative to the global average direction, we pick an arbitrary When we measure the variance in the winding angle at
point A, compute the winding angle frodto X, and subtract random points along the longest loop in the RGB configura-
a global constant so that the average winding angle at pointson in a region of ordet, we find that the variance grows
on the curve is 0. like 1XlogL—so in the notation of17], k,=1. This wind-

FIG. 2. (Color online The
RGB model on the triangular do-
main (L=20) is conformally
mapped to a disk. The inverse
conformal map, from the disk to
the triangle, is the hypergeometric
function shown in the diagram. If
the RGB model is conformally in-
variant, then the loops in the disk
will be rotationally invariant.
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FIG. 3. In the RGB modell{=1024), the outermost loop sur-
rounding the center point is selected, and conformally mapped to
the disk. The image of this loop appears to be rotationally invariant;
in particular, the empirical cumulative distribution functiofeslf’s)
for the furthest extents of the loop in thedirection,y direction,

—Xx direction, and—y direction appear to coincide.

ing angle variance coefficient of 1 also shows up in the con-

tours of FK clusters at criticality wheq=4, and other re- FIG. 4. (Color onling The minimum spanning treéMST) on
lated models such as the double-dimer model and,Sk&e the 32<32 square grid, mapped conformally to the disk so that
[17-19). three of the corners of the square are mapped to the cube roots of
unity. The paths connecting these corners are highlighted; the triple
IV. CONFORMAL INVARIANCE OF RGB LOOPS point T is the point contained in all three paths.

Since there is only one region, the equilateral triangle, for
which we canrapidly generate RGB configurations, this ning tree and uniform spanning tree models. The minimum
makes the testing of conformal invariance somewhat interspanning treéMST) is formed by assigning uniformly ran-
esting. The test that we use is similar in spirit to the testglom edge weights to the edges of the Cartesian lattice, and
used by Schramm to test the conformal invariance of thepicking the spanning tre@onnected acyclic subset of edyjes
uniform spanning tree. We conformally mapped the RGBwhich minimizes the total weight. The uniform spanning tree
model on the triangular domain to a circular domain, aS(UST) is S|mp|y a Spanning tree chosen uniform]y at random
shown in Fig. 2. If the RGB model with flat boundary con- from all spanning trees.
ditions were C(_)nformally in_variant, then i_t must be that after Figure 4 shows the MST of a square grid after it is con-
we map a region to the disk, the resulting system of 100p§ormally mapped to the unit disk, with three of the corners
would be rotationally invariant. But if conformal invariance mapped to the three cube roots of unity. To test the rotational

failed to hold, then there would be no particular reason tq, ~riance of the MST after it is mapped to the disk, we

believe that the loops mapped to the disk would be rotation; : .
ally invariant. After all, referring to Fig. 2, the points in the looked at the paths connecting the three points at the cube

disk to which the corners of the triangle are mapped certainl;?OOtS of unity (highlighted in Fig. 4, and focused on the

look different than other points in the disk, sopriori we tr|pIe'—por|]nt .chontaln.ed n "?‘” trr]1ree p;'if,*)f If the 'ﬂlﬁge of
would expect the image in the disk to be anisotropic if theMST in the d's_ were isotropic, then e T.’ ande_ T
RGB model were not conformally invariant. As we shall see Would be equidistributed. However, as Fig. 5 illustrates,
the minimum spanning tree model fails this test, so this test€Se variables are not equidistributed, so we conclude that
is a nontrivial test of conformal invariance. the MST is not conformally invariant. The conformal nonin-
To test the rotational invariance of the image of the RGBVariance of the MST is surprising, given the close relation-
model in the disk, we singled out the outermost loop surship between the MST and invasion percolati@d], the
rounding the center of the circular domain, and collectecclose relationship between invasion percolation and percola-
statistics on its furthest extents in thex and +y directions. ~ tion, and the conformal invariance of percolati@i—23.
If the loops in the RGB model are conformally invariant,  In contrast to the MST, the UST passes this test, as shown
then these four random variables would be equidistributedn Fig. 6. The triple poinfl connecting three boundary points
But otherwise, there would be no particular reason to believef the UST is already known to be conformally invariant
that any of these random variablggher than the first twpo
would have the same distributions. As shown in Fig. 3, the ;
cumulative distribution functions for these four random vari-
ables appear to coincide, so we conclude that the RGB model
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SPANNING TREES L . .
FIG. 5. The distribution of the triple poirit for the MST(on the

To evaluate the efficacy of our conformal invariance test,1024x1024 grid is not symmetric under 120° rotations, as it would
we applied it to two additional models: the minimum span-be if the MST were conformally invarianfw=exp(27i/3).]
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FIG. 6. In contrast, the distribution of the triple poihtfor the FIG. 7. Comparison of the outermost loop surrounding the ori-
UST (on the 10241024 grid passes this conformal invariance gin within the red-green-blue and double-dimer models. The cdf for
test. Kenyor{24] has proven that the triple point for UST is in fact the size of the RGB loop is smaller than the corresponding cdf for
conformally invariant(see alsd25]). the double-dimer loop, so in this sense the outermost RGB loop is

larger than the outermost double-dimer loop. There is a good
[24], and indeed the entire UST process is now known to be&hance that the outermost RGB loop approaches the boundary quite
conformally invarian{25]. closely, as in Fig. 2.

Thus we learn not only that the minimum spanning tree is
not conformally invariant, but that this test is a nontrivial test
of conformal invariance.

VII. CONCLUSIONS

Our experiments indicate that the loops of the RGB model
(with flat boundary conditionsare conformally invariant and
have windiness constant 1. Earlier experimerit§] have
.~indicated that the fractal dimension is 3/2. These properties
lengthL, we would expect the number of loops Surround'ngsuggest that RGB loops belong to the same universality class

a point to scale as constogL. The value of this constantis "0 \vie_dimer loops, the fully-packed-loop model with
a measure of how deeply nested the loops are. For the

double-dimer model, Kenyof26] proved that this nesting =2, de ;che Clo?tgutrs gf ?E”tB'C?ltEK clutsterswamgB4|, and
constant is 1. (Cardy and Ziff calculate this nesting con- are closely related to SLE But the systemo oops

stant for FK contour§27], which is 142 whenq=4.) We (r_lotjust individual loopsdiffers from thg system of double-
measured the nesting constant of the RGB loops, and foung,i'mer loops, as the loops are nested within one another more
that it is 20%—25% larger than the double-dimer nesting contigntly:
stant; Sheffield28] has recently predicted this constant to be
J3/2/72. Figure 7 shows that the outermost red-green-blue
loops are in a sense larger than the outermost double-dimer
loops, which is consistent with the red-green-blue loops be-

VI. NESTING OF RGB LOOPS

For a scale-invariant loop model on a region of side
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